Representation of Positive & Negative Integral and Real Values

• A representation for both positive and negative integral values is needed

• Objectives
 • Easy to create the negative of a value
 • Easy to perform arithmetic with both positive and negative values
 • East to convert to and from decimal

• A representation for real numbers is needed
• Objectives are similar
Difference Between Numbers Represented on Computers and in Mathematics

• Range
 • The scope of numbers from the smallest possible to the largest possible that can be represented

• Precision
 • The number of bits (digits) of accuracy available to approximate a real value

• Integral numbers in computers are limited in range
• Floating-point numbers in computers are limited in range and precision
Integral Number Representation

• Integers
 • Unsigned
 • Sign and magnitude
 • One’s-complement
 • Two’s-complement
 • Excess notation

• Range
Unsigned

• The simplest representation allows for only positive values

• There is no way to represent negative values
Sign and Magnitude

• Perhaps the next simplest representation has a sign bit followed by the value
 • Sign bit of 1 indicates a negative value
 • Sign bit of 0 indicates a positive value

• The MSB is the sign bit
 • Value = \(-1^{\text{Sign-bit}} \times \text{Magnitude}\)
• Difficult to perform arithmetic
• Two representations for zero
One’s-Complement

- Given a value, form its one’s-complement by inverting each of the bits
- The MSB will still be used to indicate a negative value
 - Sign bit of 1 indicates a negative value
 - Sign bit of 0 indicates a positive value
- Still difficult to perform arithmetic
- Still two representations for zero
Two’s-Complement

- Given a value, form its two’s-complement by inverting each of the bits and then adding one
 - Complement then increment
- The MSB will still be used to indicate a negative value
 - Sign bit of 1 indicates a negative value
 - Sign bit of 0 indicates a positive value

- Easy to perform arithmetic
 - Conventional addition works with positive and negative numbers
- Only one representation for zero
- One more negative number than positive number
 - Zero has a sign bit of 0
- Two’s-complement is the most common representation for signed integral numbers
Excess Notation

• Value = Representation - Bias

• For example, using 8 bits,
 • If the representation is 64_{10} with a bias of 64_{10}, then the value is 0
 • If the representation is 65_{10} with a bias of 64_{10}, then the value is 1_{10}
 • If the representation is 63_{10} with a bias of 64_{10}, then the value is -1_{10}

• Although not easy to perform arithmetic, allows the demarcation point between positive and negative numbers to be set

• Only one representation for zero

• Used within floating-point numbers
Range of Values Represented

• Assume 8-bit word size
• 256 different bit representations

<table>
<thead>
<tr>
<th>Representation</th>
<th>Minimum Value</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>One’s-complement</td>
<td>-127</td>
<td>127</td>
</tr>
<tr>
<td>Two’s-complement</td>
<td>-128</td>
<td>127</td>
</tr>
<tr>
<td>Excess Notation, Bias=64_{10}</td>
<td>-64</td>
<td>191</td>
</tr>
</tbody>
</table>
Floating-Point Number Representation

- \(s \) sign bit (0 for positive, 1 for negative)
- \(b \) base or radix of the representation
- \(e \) exponent value (represented using excess notation with a bias)
- \(p \) number of base-\(b \) digits in the significand
- \(f_k \) significand digits
- \(x = -1^s \times b^e \times (\sum_{k=1}^{p} f_k \times b^{-k}), \ e_{\text{min}} \leq e \leq e_{\text{max}} \)
Floating-Point Bit Configuration

• The sign bit is the MSB
• Followed by the exponent value
• The significand digits are in the LSBs
IEEE 754 Floating-Point

- Size = 32 bits (float), 64 bits (double)
- Radix = 2
- Sign bit field
- Exponent field = 8 bits (float), 11 bits (double)
- Fraction field = 23 bits (float), 52 bits (double)
- Bias = 127 (float), 1023 (double)
- Zero value representation has exponent field = 0, fraction field = 0
 - Can be positive or negative
Normalization

- A normalized number has $f_1 > 0$, if x (i.e., the value) is not 0
- A subnormal (denormalized) number is non-zero, has $e = e_{\text{min}}$ and $f_1 = 0$
 - Exponent is -126 (float), -1022 (double)
- An unnormalized number is non-zero, has $e > e_{\text{min}}$ and $f_1 = 0$
- A subnormal number is too small to be normalized
- Hidden bit
 - For normalized numbers, there is an assumed single 1 bit to the left of the binary point
 - Gives one more significant bit
Special Values

• Infinities
 • Positive
 • Negative
 • $sign = 0$ for positive infinity, 1 for negative infinity; $biased\ exponent = all\ 1\ bits; fraction = all\ 0\ bits$

• NaN’s
 • Quiet
 • Signaling
 • $sign = either\ 0\ or\ 1; biased\ exponent = all\ 1\ bits; fraction = anything\ except\ all\ 0\ bits\ (because\ all\ 0\ bits\ represents\ infinity)$
Range and Precision of Values Represented

<table>
<thead>
<tr>
<th>Representation</th>
<th>Closest to Zero</th>
<th>Furthest from Zero</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>float</td>
<td>±1.18 × 10⁻³⁸</td>
<td>±3.4 × 10³⁸</td>
<td>~7 decimal digits</td>
</tr>
<tr>
<td>double</td>
<td>±2.23 × 10⁻³⁰⁸</td>
<td>±1.80 × 10³⁰⁸</td>
<td>~15 decimal digits</td>
</tr>
</tbody>
</table>