
Deadlocks
Prof. James L. Frankel

Harvard University

Version of 4:38 PM 4-Oct-2022
Copyright © 2022, 2017, 2015 James L. Frankel. All rights reserved.

Introduction to Deadlocks

• Computer resources
• Files

• Database records

• Fields in Internal Tables

• Printers

• Tape drives

• Processes need access to resources in reasonable order

• Example of a deadlock
• Process 1 holds resource A and requests resource B

• At the same time, process 2 holds resource B and requests A

• Both processes are blocked and neither can make progress

2

Resources (1 of 2)

• Deadlocks can occur through a chain of exclusive access
grants and requests

• Preemptable resources
• Can be taken away from a process with no ill effects

• Nonpreemptable resources
• Will cause the process to fail if taken away

3

Resources (2 of 2)

• Sequence of events required to use a resource
1. Request the resource

2. Use the resource

3. Release the resource

• Must wait if request is denied
• Requesting process may be blocked

• Request may fail with error code

4

Resource Acquisition: Deadlock-free

typedef int semaphore;
semaphore resource_1;
semaphore resource_2;

void process_A(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

}

void process_B(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

}

5

Resource Acquisition: Potential deadlock

typedef int semaphore;
semaphore resource_1;
semaphore resource_2;

void process_A(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

}

void process_B(void) {
down(&resource_2);
down(&resource_1);
use_both_resources();
up(&resource_1);
up(&resource_2);

}

6

Introduction to Deadlocks

• Formal definition:
A set of processes is deadlocked if each process in the set is waiting
for an event that only another process in the set can cause

• Usually the event is the release of a currently held
resource

• None of the processes in the deadlock chain are able to
• Run

• Release resources

• Be awakened

7

Four Conditions for Deadlock

1. Mutual exclusion
• Each resource is assigned to a single process or is available

2. Hold and wait
• Processes can hold resources then request more resources

3. No preemption
• Previously granted resources cannot be forcibly taken

away

4. Circular wait
• Must be a circular chain of two or more processes

• Each process is waiting for resource held by the next
member of the chain

8

Deadlock Modeling (1 of 3)

• Modeled with directed graphs called Resource
Allocation Graphs

• Squares are resources and circles are processes

• a: resource R is being held by process A
• b: process B is requesting/waiting for resource S
• c: processes C and D are in a deadlock over resources T and U

9

This ordering results in a deadlock

A B C

Deadlock Modeling (2 of 3)

10

Deadlock Modeling (3 of 3)

This ordering avoids a deadlock

(o) (p) (q)

11

Deadlock Strategies

Four approaches to deal with deadlocks
1. Ignore the problem – follow the so-called “Ostrich

Algorithm”

2. Detect and recover from a deadlock

3. Dynamically avoid deadlocks
• Carefully allocate resources

4. Prevent deadlocks from occurring
• Negate at least one of the four necessary conditions

12

Ignore the Problem: The Ostrich Algorithm
• Pretend there is no problem

• Reasonable in some circumstances
• When deadlocks occur very rarely

• When cost of prevention is high

• Some aspects of UNIX and Windows OSes take this
approach

• Trade off between
• Convenience

• Correctness

13

Detection with One Resource of Each Type

• Resource graph denotes resource ownership and requests

• If a cycle can be found within the graph, then a deadlock
has been identified

14

Detection w/Multiple Resources of Each Type

Data structures needed by deadlock detection algorithm

Σ(i=1 to n) Cij + Aj = Ej

15

Detection w/Multiple Resources of Each Type

Deadlock Detection Algorithm

Assume a worst case scenario: that processes keep all acquired
resources until they exit

1. Start with all processes unmarked

2. Look for an unmarked process, Pi, for which the i-th row of R is
less than or equal to A (for all elements)

3. If such a process is found, add the i-th row of C to A, mark
process Pi and go back to step 2

4. If no process Pi exists, the algorithm terminates

5. When the algorithm terminates, all unmarked processes (if any
exist) are deadlocked

16

Detection w/Multiple Resources of Each Type

An example for the deadlock detection algorithm

17

Recovery from Deadlock (1 of 2)

• Recovery through preemption
• Take a resource from some process to break the

deadlock

• Whether this is possible depends on the nature of the
resource

• Recovery through rollback
• Checkpoint processes on a periodic basis

• If a deadlock occurs, roll back some process to a saved
state where it did not yet acquire a needed resource

18

Recovery from Deadlock (2 of 2)

• Recovery through killing processes
• Crudest but simplest way to break a deadlock

• Kill one of the processes in the deadlock cycle

• Other processes get its resources

• Choose a process that can be rerun with no ill effects

19

Deadlock Avoidance: Resource Trajectories

Resource trajectories of two processes
The rectangle bounded by I5 & I6, I1 & I2 is unsafe

20

Safe States

• A state is safe if there is some scheduling order in which every
process can run to completion even if all of them suddenly request
their maximum number of remaining resources immediately

21

Unsafe States

• An unsafe state does not mean that a system is currently deadlocked

• A system can continue to run in a unsafe state, but it may eventually
lead to a deadlock

• If a system is in a safe state, it is guaranteed that the system will allow
all processes to eventually complete successfully – that is, no
deadlock can occur from a safe state

22

Safe and Unsafe States (1 of 2)

Demonstration that the state in (a) is safe

(a) (b) (c) (d) (e)

23

Safe and Unsafe States (2 of 2)

Demonstration that the state in (b) is not safe

(a) (b) (c) (d)

24

The Banker's Algorithm for a Single Resource

• Example of resource allocation states
• (a) is safe

• (b) is safe

• (c) is unsafe

(a) (b) (c)

25

The Banker's Algorithm

• Small-town banker’s actions
• Grant lines of credit to customers

• If granting a loan request leads to an unsafe state, the
request is denied

• If granting a loan request leads to a safe state, the
request is carried out

• A state is safe if the banker has enough resources to
satisfy some customer
• If so, then those funds are assumed to be repaid

• Next, the customer now closest to the limit is checked and
the algorithm repeats

• If all loans can eventually be repaid, then the state is safe

26

Banker's Algorithm for Multiple Resources

Example of banker's algorithm with multiple resources

27

The Banker's Algorithm for Multiple Resources

• Look for any row, R, whose unmet resource
needs are <= A. If none is found, then system
will eventually deadlock.

• Assume the process for row R requests and
releases all its resources. Mark that process as
terminated and add its resources to the A vector.

• Repeat the two steps above until all processes
terminate – then the initial state was safe – or no
eligible row is found – then the initial state was
unsafe.

28

Shortcomings of the Banker's Algorithm

• Processes rarely know what their maximum
resource needs are

• The number of processes changes dynamically

• Resources can become unavailable – a resource
can break

• Processes may have to wait too long for their
needed resources to be released

29

Deadlock Prevention: Attacking the Mutual Exclusion Condition

• Some devices (such as printer) can be spooled
• Only the printer daemon uses printer resource

• Deadlock for printer eliminated via spooling

• Not all devices can be spooled

• Principle
• Virtualize the resource

• Avoid assigning resource when not absolutely necessary

• As few processes as possible actually claim the resource

30

Deadlock Prevention: Attacking the Hold and
Wait Condition

• Require processes to request all resources before starting
execution
• A process never has to wait for what it needs

• Problems
• May not know required resources at start of execution
• Ties up resources that other processes could be using

• Variation
• Each process must give up all resources before requesting any

additional resources
• Then, the process can request all currently needed resources

31

Deadlock Prevention: Attacking the No
Preemption Condition

• This is not a viable option

• Consider a process given the printer
• Halfway through its job

• Forcibly take away printer

• But, spooling/virtualization effectively
allows preemption

32

Deadlock Prevention: Attacking the Circular Wait
Condition

• Numerically ordered resources

• A resource graph

• Requests must be made in numerical order

(a) (b)

33

Summary of approaches to deadlock prevention

34

Other Approaches: Two-Phase Locking
• Phase One

• Process tries to lock all records it needs, one at a time

• If needed record found locked, start over

• No real work done in phase one – locks are acquired

• When Phase One succeeds, start second phase
• Read data, performing updates

• Release locks

• Similar to requesting all resources at once

35

Nonresource Deadlocks

• Possible for two processes to deadlock without a
resource
• Each process is waiting for the other to do some task;

for example, for communication to occur
• Timeouts may help to resolve this deadlock

• Can happen with semaphores
• Each process required to do a down() on two

semaphores (mutex and another)
• If done in wrong order, deadlock results

• Livelock
• Busy waiting rather than deadlocking, but otherwise

equivalent

36

Starvation

• If algorithm is to allocate a resource to the shortest job
first, this can cause indefinite starvation

• Works great for multiple short jobs in a system

• May cause a long job to be postponed indefinitely even
though it is not blocked

• Solution
• First-come, first-served policy

37

