
Virtualization
Prof. James L. Frankel

Harvard University

Version of 6:19 PM 2-May-2017
Copyright © 2017 James L. Frankel. All rights reserved.

Hypervisor emulates architectures

• Type 1: run on bare hardware

• Type 2: built on top of a native OS's system calls

Advantages

• Can run multiple services/applications on one computer even if they
require different ISA (instruction set architectures) or OSes
• Share hardware, reduce cost

• Fault tolerance/Isolation
• One crash does not affect other systems

• Can migrate applications/services more easily than with physical
processors

• Can still support legacy OSes
• Enables developers to develop code and test against a large range of

configurations/OSes/etc.
• Easier to switch than with multiboot
• Use virtualization to provide virtual computers on the cloud as needed

Challenge: how to emulate the architecture
and maintain good performance
• Safety: Hypervisor has full control of virtualized resources

• Fidelity: Same behavior as on bare hardware

• Efficiency: Much of the code in the VM should run without hypervisor
intervention

Long History of VMs

• IBM's VM/370 was released in 1972

Instruction Set Issues

• Sensitive instructions: behave differently in kernel mode vs. user
mode

• Privileged instructions: trap if executed in user mode

Efficient Implementation of Sensitive
Instructions
• To efficiently implement a VM, sensitive instructions must be a subset

of privileged instructions

• An architecture should not allow a user mode program to read
sensitive state data

Implementation Strategy

• Trap and emulate!

VMware’s Approach

• VMware was able to virtualize architectures before the constraints
above were met!
• Problematic sequences of code were replaced on-the-fly by safe code

sequences (binary translation -- also used to allow CISC instruction sets to be
run efficiently on RISC computers)

Paravirtualization

• The VM is visible to the user program

• Calls exist to interact with the VM

Comparison of Type 1 vs. Type 2 Hypervisors

• Type 1 Hypervisors support multiple guest operating systems

• Type 2 Hypervisors (AKA hosted hypervisors) run on top of a host
operating system and support multiple guest operating systems

Virtualization of the x86 Architecture

• Virtualization of the x86 architecture was possible by utilizing two of
the four protection rings that were unused in x86 OSes
• This allowed memory accesses to trap to the more privileged ring

• Ring 0: most privileged, Ring 3: least privileged

• Native OS: Ring 0 was OS kernel, Ring 3 was User Processes

• Virtualized: Ring 0 was Hypervisor, Ring 1 was OS kernel, Ring 3 was
User

Dynamic Inspection & Rewriting of Code

• Dynamically inspect and possibly re-write basic blocks that include
sensitive instructions
• End each basic block with a trap to the hypervisor so that the next basic block

can be inspected

• Almost all blocks do not contain sensitive instructions

• Cache the re-written code so that it can be executed repeatedly without need
to re-inspection

• Optimize the end of inspected/translated basic blocks to branch to the next
basic block without requiring a trap to the hypervisor

